
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710: Computer Hardware Design Winter 2023

1 Instructor: Daniel Llamocca

Homework 3
(Due date: March 21st @ 11:59 pm)

Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (15 PTS)
▪ The purpose of this exercise is to explore how to rapidly fill up LUT values and verify the correct operation.

Here, you are asked not to write VHDL code, but rather to setup the parameters for it, synthesize, and simulate.

▪ LUT approach for calculating arbitrary functions: We want to implement the following system.

✓ The figure shows three 3 LUT 8-to-12, where each LUT holds the pre-computed results of 3 functions:
 Input format: [8 7] (signed). Input data range: [−1,1).
 Output format: [12 11] (signed). Output data range: [−1,1)

✓ Input data is captured using the signal E. When the corresponding output data is available, the signal v is asserted.

▪ The VHDL code and testbench for this system can be found here.

test.vhd → Top file where all the components are interconnected.

 LUT_group.vhd → File that includes all the LUTs.

 LUT_NItoNO.vhd → File that implement one LUT.
 dffe.vhd

atb_test_sim.vhd → Testbench

PROCEDURE
▪ Select the proper parameters:

✓ test.vhd: NC=3, NI=8, NO=12, SAME=”NO”. This generates the system

shown in the figure. This file reads the LUT contents from

LUT_values8to12.txt file (you need to generate this file).

✓ atb_test_sim.vhd: NC=3, NI=8, NO=12. For proper simulation.

▪ Generate the input text file (Synthesis): LUT_values8to12.txt. The text file contains the pre-computed values (12-bit signed

FX numbers). It lists 256 entries per function (as per the figure). An L separator is included between each 256-entry group.

You can use the provided MATLAB script (LUTvalGen8to12.m) to generate this file. This script requires the FX converter.

▪ Create a Vivado project and synthesize your circuit.
▪ Perform Functional Simulation:

✓ The testbench atb_test_sim.vhd will generate all possible input cases (from

00000000 to 11111111) and write the output results in a text file

(out_bench_NI8_NO12.txt). Three 12-bit words are written per output line

(256 lines), each 12-bit word represents the output of a different function.
✓ Simulate the circuit until all the 256 input cases are processed. To verify the

correct operation of your circuit, compare the values in the text file generated
by the Simulation with those in the input text file you generated for Synthesis.

▪ Upload (as a .zip file) the following files to Moodle (an assignment will be created). DO NOT submit the whole Vivado project.

✓ VHDL code, VHDL testbench: You modified these files by assigning the proper VHDL parameters.

✓ Input text file (LUT_values8to12.txt) and output text file (out_bench_NI8_NO12.txt).

256
values

12 bits 12 bits 12 bits

Output text file (simulation):

QD

E

IA

E
OA

v

LUT8 12

8 12

8 12

8

QD

E

8

QD

E

8

QD

QD

QD

12

12

12

OB

OC

LUT

LUT

256
values

...

12 bits

256
values

...

256
values

...

Input text file (Synthesis):

http://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Vivado/Unit_9/LUTsys.zip
http://www.secs.oakland.edu/~llamocca/dig_library/arith/script_fx2dec_converter.zip

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710: Computer Hardware Design Winter 2023

2 Instructor: Daniel Llamocca

PROBLEM 2 (65 PTS)
▪ Design (write the VHDL code) for the iterative Circular CORDIC FX architecture with 16 iterations. 𝑖 = 0, 1, 2, 3,… 15.

 0, 𝑦0, 𝑧0: initial conditions. 𝑚𝑜𝑑𝑒 = ‘0’ → Rotation Mode. 𝑚𝑜𝑑𝑒 = ‘1’ → Vectoring Mode. (35 pts)

▪ Operation: When 𝑠 = 1, 𝑖𝑛, 𝑦𝑖𝑛, 𝑧𝑖𝑛 and 𝑚𝑜𝑑𝑒 are captured. Data will then be processed iteratively. When data is ready
(𝑑𝑜𝑛𝑒 = ’1’), output results appear in 𝑜𝑢𝑡 , 𝑦𝑜𝑢𝑡, 𝑧𝑜𝑢𝑡.

▪ Input/Intermediate/Output FX Format:
✓ Input values: 𝑖𝑛, 𝑦𝑖𝑛, 𝑧𝑖𝑛: [16 14]. Output values: 𝑜𝑢𝑡 , 𝑦𝑜𝑢𝑡, 𝑧𝑜𝑢𝑡: [16 14]
✓ Intermediate values: 𝑧𝑖: [16 14]. 𝑖 , 𝑦𝑖: [20 18]. Here, we use 4 extra bits (add four 0’s to the LSB) for extra precision.

✓ We restrict the inputs 0 = 𝑖𝑛, 𝑦0 = 𝑦𝑖𝑛 to [−1,1). Then, CORDIC operations need up to 2 integer bits (determined via

MATLAB simulation). For consistency, we use 2 integer bits for all input/intermediate/output data.
▪ Angles: They are represented in the format [16 14]. Units: radians. Pre-compute the values and store them in an LUT.

▪ Barrel shifters: Use the file mybarrelshift_gen.vhd with SHIFTTYPE=”ARITHMETIC” (signed data), N=20, SW=4, dir=‘1’.

▪ Control: This circuit controls the iteration index 𝑖, as well as the internal signals:

0 1 1 0

4
0

16

Xin

4
0

Yin

2-i

s_xyz

E

+/-

i

data_X data_Y

X Y

di

next_X next_Y

Xout Yout

0 1

Zin

data_Z

Z

next_Z

Zout

16

i

e_i

LUT

di

CONTROL
Y

Z

s mode

done

di

s
_
x
y
z

E i

 𝑖 𝑦𝑖 𝑧𝑖

+/- +/-

E E

[16 14]

16 16 16
[16 14] [16 14] [16 14]

[16 14]

2020
[20 18][20 18]

16
[16 14]

20 20

2020 20 20

16

20 20

s_xyz

[20 18]

[20 18][20 18]

2-i
[20 18]

a b b a a b

i

4

4

16
[16 14]

16
[16 14]

EEE

 𝑛 2 𝑖

FSM

Q

counter

0 to 15

E

sclr z

E
i

sc
lr
i

s

4 i
zi

D

E

Q

s_xy z

mode

Z(15)Y(19)

1 0

di

E

CONTROL

resetn=0

1

Ei, sclri 1

s

S1

S2

s_xy z 1, E 1

E 1

0

1

zi Ei 1

Ei, sclri 1

FSM

1

done 1

s

S3

0

0

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710: Computer Hardware Design Winter 2023

3 Instructor: Daniel Llamocca

SIMULATION (Behavioral)
▪ To represent the input data and LUT angles in Fixed-Point arithmetic (and vice versa), you can use any online tool or the

provided Fixed-Point to decimal converter (my_dec2fx.m, my_fx2dec.m, my_bitcmp.m).

✓ For example, in MATLAB/Octave, you can run the following script that converts some data (e.g. An) as well as the angles

 𝑛 (2 𝑖) into 16-bit numbers in [16 14] signed FX representation:
An = 1.6468; % you can use any number here

fx_n = 16; fx_p = 14; type = 's'; % [16 14] signed FX representation

dat = my_dec2fx(An, fx_n, fx_p, type);

disp(dat); % prints a 16-bit value representing An

for i = 1:16

 angle(i) = atan(2^(-(i-1))); % angle (radians)

 e_i(i,1:16) = my_dec2fx(angle(i), fx_n, fx_p, type);

 disp (e_i(i,1:16)); % prints a 16-bit value representing angle(i)

end

▪ A Circular CORDIC MATLAB/Octave model is also available. Make sure to use the ‘Basic CORDIC’. This script can be useful

to verify the hardware output data. The .zip file contains the following files:

✓ run_examples_cordic.m: This is the top script that contains examples of how to emulate a CORDIC computation given

input data (the plotting part only work in MATLAB).

 Ancillary files (functions): cordic_circular.m, get_scalefactor.m. They implement the CORDIC equations.

✓ my_dec2fx.m, my_fx2dec.m, my_bitcmp.m: This Fixed-Point to decimal converter is helpful to convert the LUT angles

and input data to their Fixed-Point representation (binary).

▪ First testbench: Simulate the circuit for the cases shown in the table. You can use 𝐴𝑛 = 1.6468. Convert the real numbers

to the signed FX format [16 14]. For each case, verify that 6, 𝑦 6, 𝑧 6 reach the proper values. (10 pts)

𝐴𝑛 = 1.6468
Input Data Expected Output Results

 0 𝑦0 𝑧0 𝑁 𝑦𝑁 𝑧𝑁

Rotation Mode

(mode = 0)

0 1 𝐴𝑛⁄ 𝜋 6⁄ −sin (𝜋 6⁄) cos(𝜋 6⁄) 0

0 1 𝐴𝑛⁄ −𝜋 3⁄ −sin (−𝜋 3⁄) cos(−𝜋 3⁄) 0

Vectoring Mode

(mode = 1)

0.8 0.8 0 𝐴𝑛√0.8
2 + 0.82 0 tan (1)

0.5 1 0 𝐴𝑛√0.5
2 + 12 0 tan (2)

▪ Second Testbench: Simulate the circuit reading input values (0, 𝑦0, 𝑧0) from input text files and writing output values

(6, 𝑦 6, 𝑧 6) on an output text file. (20 pts). Your testbench must:

✓ Read input values (0, 𝑦0, 𝑧0) from two input text files (provided):

 in_benchR.txt: Data for Rotation Mode testing.

20 data points (0, 𝑦0, 𝑧0). Data format: [16 14]. Each line per data point written as hexadecimals: |x0|y0|z0|.

Data set: 0 = 0, 𝑦0 = 1 𝐴𝑛⁄ , 𝑧0 = −𝜋 2⁄ 𝑡𝑜 𝜋 2⁄ . 𝑧0: 20 equally-spaced values between −𝜋 2⁄ 𝑡𝑜 𝜋 2⁄ .

With this data set in the rotation mode, note that 6 → −𝑠𝑖𝑛(𝑧0), 𝑦 6 → 𝑐𝑜𝑠(𝑧0).

 in_benchV.txt: Data for Vectoring Mode testing.

20 data points (0, 𝑦0, 𝑧0). Data format: [16 14]. Each line per data point written as hexadecimals: |x0|y0|z0|.

Data set: 0 = 0.0 𝑡𝑜 0.5, 𝑦0 = 1, 𝑧0 = 0. 0: 20 equally-spaced values between 0.0 𝑡𝑜 0.5.

With this data set in the vectoring mode, note that 6 → 𝐴𝑛√ 0
2 + 𝑦0

2, 𝑧 6 → 𝑡 𝑛(𝑦0 0⁄).

✓ Write output results (6, 𝑦 6, 𝑧 6) on out_bench.txt. Data format: [16 14], each line per data point written as

hexadecimals: |x16|y16|z16|. The output text file should have 40 data points (20 from the rotation mode and 20 from

the vectoring mode). Using a handful of data points, verify that your results are correct.

✓ Vivado tips:
 Make sure that the input text files are loaded as simulation sources.
 The output text file should appear in sim/sim_1/behav.

 To verify that the output results are correct, you need to represent data as fixed-point numbers. Use Radix →

Real Settings in the Vivado simulator window.

✓ For reference, the MATLAB script cordic_example_ece4710.m generates the input text files and reads the output textfile

(out_bench.txt) as specified here. It uses the Circular CORDIC MATLAB/Octave model.

▪ Submit (as a .zip file) the generated files: VHDL design code, VHDL testbenches, and output text file to Moodle (an

assignment will be created). DO NOT submit the whole Vivado Project.
✓ .zip file: Include only the .vhd and .txt files in a single folder (no subdirectories). Points will be deducted otherwise.

http://www.secs.oakland.edu/~llamocca/dig_library/arith/script_fx2dec_converter.zip
http://www.secs.oakland.edu/~llamocca/dig_library/arith/script_cordic_circular.zip
http://www.secs.oakland.edu/~llamocca/dig_library/arith/script_cordic_circular.zip

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710: Computer Hardware Design Winter 2023

4 Instructor: Daniel Llamocca

PROBLEM 3 (10 PTS)
▪ Complete the timing diagram of the following circuit, which computes integer square root using a binary search approach.

𝑛 = 12. Note that 𝑟𝑚 = 1 𝑖 𝑟𝑘
2 > 𝐷, 𝑒𝑙𝑠𝑒 0, 𝑟𝑒 = 1 𝑖 𝑟𝑘

2 = 𝐷, 𝑒𝑙𝑠𝑒 0. Shift registers: serial input is ‘0’. The value of 𝐷 is an

unsigned decimal. FSM: j is an embedded counter, j changes on the clock edge.

𝑟 𝑟 0 𝑟9 𝑟8 𝑟7 𝑟6 𝑟5 𝑟4 𝑟3 𝑟2 𝑟 𝑟0

PROBLEM 4 (10 PTS)
▪ Attach your Project Status Report (no more than 1 page, single-spaced, 2 columns, only one submission per group). This

report should contain the project title, a brief project description, and the current status of the project, including a block
diagram of your system. For formatting, you can use the following template (Final Project – Report Template.docx).

clock

resetn

Er

s

S1

j

state

done

rm

𝑟

2𝑛

2 0
2𝑛 2

25 24 23 22 2 20

220
22𝑛 4

2 0 28 26 24 22 20

𝑟 0 𝑟9 𝑟8 𝑟7 𝑟6 𝑟5

𝑟
2

22𝑛 2

𝑟6
2 𝑟5

2 𝑟4
2 𝑟3

2 𝑟2
2 𝑟

2

0

𝑟3 𝑟0𝑟4 𝑟2 𝑟

0

0

𝑟 0
2 𝑟9

2 𝑟8
2 𝑟0

2𝑟7
2

2 8 2 6 2 4 2 2

29 28 27 26

DI 4074

𝑟𝑘

 𝑘

 𝑘
2

𝑟𝑘
2

0 1

E

2j

Er

data_r

next_r

FSM

s

done

Ed

Ei Li

100...0

sr
010...0 00010...0 1 0

data_sqr

01000...0

s_r

++/-

Q

a b

 +/-
b a

DI

comp

rm

rm rm

re

RIGHT
RIGHT
BY 2

L Li L
E

Ei Ei
E E

Er
E

Ed

resetn=0

1

j n-1

s

S1

S2

sr,Er,Ei,Li,Ed 1

1

0

re

Er, Ei 1

FSM

1

done 1

s

S3

0

0

j=1 j j-1

j 0

yes

no

Li

sr

Er

	Problem 1 (15 pts)
	Procedure

	Problem 2 (65 pts)
	Problem 3 (10 pts)
	Problem 4 (10 pts)

